Overview
PredictionAccuracy displays a chart comparing AI predictions vs actual outcomes over time. Perfect for tracking AI model accuracy, building trust in AI decisions, and monitoring prediction quality.
Features
- Predicted vs actual line comparison
- Overall accuracy score (MAPE-based)
- Optional deviation trend bars
- Summary statistics display
- Color-coded accuracy levels
Examples
Basic Chart
Default view with accuracy score
Overall Accuracy
98%
(6 predictions)Avg. Predicted
86.3
Avg. Actual
85.8
Avg. Deviation
+0.5
High Accuracy Example
Model performing well
Overall Accuracy
98%
(6 predictions)Avg. Predicted
86.3
Avg. Actual
85.8
Avg. Deviation
+0.5
Moderate Accuracy Example
Model with room for improvement
Overall Accuracy
91%
(6 predictions)Avg. Predicted
79.7
Avg. Actual
78.0
Avg. Deviation
+1.7
Low Accuracy Example
Model needing retraining
Overall Accuracy
71%
(6 predictions)Avg. Predicted
77.5
Avg. Actual
75.0
Avg. Deviation
+2.5
With Deviation Trend
Showing deviation trend
Overall Accuracy
91%
(6 predictions)Avg. Predicted
79.7
Avg. Actual
78.0
Avg. Deviation
+1.7
Extended Timeline
Full year of predictions
Overall Accuracy
98%
(12 predictions)Avg. Predicted
84.8
Avg. Actual
84.9
Avg. Deviation
-0.2
With Reference Line
Average reference line
Overall Accuracy
98%
(6 predictions)Avg. Predicted
86.3
Avg. Actual
85.8
Avg. Deviation
+0.5
With ChartCard
Wrapped in ChartCard
AI Model Performance
Prediction accuracy over the last 6 months
Overall Accuracy
98%
(6 predictions)Avg. Predicted
86.3
Avg. Actual
85.8
Avg. Deviation
+0.5
Props Reference
| Prop | Type | Default | Description |
|---|---|---|---|
predictions | PredictionDataPoint[] | required | Array of prediction data points |
metricLabel | string | 'Value' | Label for the metric being predicted |
showTrendLine | boolean | false | Show deviation trend bars |
showAccuracyScore | boolean | true | Show overall accuracy score |
showPerfectLine | boolean | false | Show average reference line |
height | number | 300 | Chart height in pixels |
className | string | - | Additional CSS classes |
PredictionDataPoint Type
date: string - Date label
predicted: number - Predicted value
actual: number - Actual value
Usage
import { PredictionAccuracy, ChartCard } from '@/ui/components/charts';
const predictions = [
{ date: 'Jan', predicted: 82, actual: 80 },
{ date: 'Feb', predicted: 85, actual: 87 },
{ date: 'Mar', predicted: 78, actual: 76 },
{ date: 'Apr', predicted: 91, actual: 89 },
];
// Basic accuracy chart
<PredictionAccuracy predictions={predictions} />
// With accuracy score
<PredictionAccuracy
predictions={predictions}
showAccuracyScore
metricLabel="Completion Rate"
/>
// With trend line showing deviation
<PredictionAccuracy
predictions={predictions}
showTrendLine
showAccuracyScore
/>
// With reference line
<PredictionAccuracy
predictions={predictions}
showPerfectLine
height={350}
/>
// With ChartCard
<ChartCard title="AI Model Performance">
<PredictionAccuracy
predictions={predictions}
showAccuracyScore
showTrendLine
metricLabel="Response Rate"
/>
</ChartCard>